Component Selection and Smoothing in Smoothing Spline Analysis of Variance Models

نویسندگان

  • Yi Lin
  • Hao Helen Zhang
چکیده

We propose a new method for model selection and model fitting in nonparametric regression models, in the framework of smoothing spline ANOVA. The “COSSO” is a method of regularization with the penalty functional being the sum of component norms, instead of the squared norm employed in the traditional smoothing spline method. The COSSO provides a unified framework for several recent proposals for model selection in linear models and smoothing spline ANOVA models. Theoretical properties, such as the existence and the rate of convergence of the COSSO estimator, are studied. In the special case of a tensor product design with periodic functions, a detailed analysis reveals that the COSSO applies a novel soft thresholding type operation to the function components and selects the correct model structure with probability tending to one. We give an equivalent formulation of the COSSO estimator which leads naturally to an iterative algorithm. We compare the COSSO with the MARS, a popular method that builds functional ANOVA models, in simulations and real examples. The COSSO gives very competitive performances in these studies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of Two Smoothing Parameters in Penalized Spline Estimator for Bi-variate Predictor Non-parametric Regression Model

Penalized spline criteria involve the function of goodness of fit and penalty, which in the penalty function contains smoothing parameters. It serves to control the smoothness of the curve that works simultaneously with point knots and spline degree. The regression function with two predictors in the non-parametric model will have two different non-parametric regression functions. Therefore, we...

متن کامل

Model Selection in Linear Mixed Models Using Mdl Criterion with an Application to Spline Smoothing

For spline smoothing one can rewrite the smooth estimation as a linear mixed model (LMM) where the smoothing parameter appears as the variance of spline basis coefficients. Smoothing methods that use basis functions with penalization can utilize maximum likelihood (ML) theory in LMM framework ([8]). We introduce the minimum description length (MDL) model selection criterion in LMM and propose a...

متن کامل

Automatic model selection for partially linear models

We propose and study a unified procedure for variable selection in partially linear models. A new type of double-penalized least squares is formulated, using the smoothing spline to estimate the nonparametric part and applying a shrinkage penalty on parametric components to achieve model parsimony. Theoretically we show that, with proper choices of the smoothing and regularization parameters, t...

متن کامل

Component Selection and Smoothing in Multivariate Nonparametric Regression

We propose a new method for model selection and model fitting in multivariate nonparametric regression models, in the framework of smoothing spline ANOVA. The “COSSO” is a method of regularization with the penalty functional being the sum of component norms, instead of the squared norm employed in the traditional smoothing spline method. The COSSO provides a unified framework for several recent...

متن کامل

Optimal Spline Smoothing of FMRI Time Series

Smoothing splines with generalized cross-validation parameter selection (GCV-spline) provide a method to find an optimal smoother for an fMRI time series. The purpose of this study was to compare the variance of parameter estimates and the bias of the variance estimator for a linear regression model smoothed with GCV-spline and the low-pass filter in SPM99 (SPM-HRF). The mean bias with the SPM-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002